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Abstract CRAM

A 0, ±1 matrix A is balanced if, in every submatrix with two TAB
nonzero entries per row and column, the sum of the entries is a multiple ounced 01
of four. This definition was introduced by Truemper and generalizes ;ation
the notion of balanced 0,1 matrix introduced by Berge. In this paper,
we survey what is currently known about these matrices, including
polyhedral results, structural theorems, recognition algorithms and )jtion I
the relation with some problems in logic. Availability Codes

Avail and I(orDist Special

1 Introduction

A 0, 1 matrix is balanced if it does not contain a square submatrix of odd order
with two ones per row and per column. This notion was introduced by Berge
(4]. A 0, ±1 matrix A is balanced if, in every submatrix with two nonzero
entries per row and per column, the sum of the entries is a multiple of four.
This definition is due to Truemper [63]. The class of balanced 0, ±1 matrices
includes balanced 0,1 matrices and totally unimodular 0, ±1 matrices. (A
matrix is totally unimodular if every square submatrix has determinant equal
to 0, ±1. The fact that total unimodularity implies balancedne , follows, for
example, from Camion's theorem [13] which states that a 0, ±1 matrix is
totally unimodular if and only if, in every square submatrix with an even
number of nonzero entries per row and per column, the sum of the entries
is a multiple of four.)

In Section 2, we characterize balanced 0, ±1 matrices in terms of "bicol-
oring". This extends the notion of graph bipartition to 0, ±1 matrices. We
then discuss integral polytopes associated with "generalized" set packing,
partitioning and covering problems. These results extend the integrality of
set packing, partitioning and covering polytopes when the constraint matrix
is balanced. We then discuss classes of 0, ±1 matrices with related polyhedral
properties, such as perfect and ideal 0, ±1 matrices. Finally we introduce the
connection with propositional logic and nonlinear 0, 1 optimization.

In Section 3, we show how to sign a 0,1 matrix into a 0, ±1 balanced
matrix (when such a signing exists, the matrix is called balanceable). It
follows that, in order to understand the structure of balanced 0, ±1 matrices,
it is equivalent to study 0,1 matrices that are balanceable. We then introduce
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a decomposition theorem for these matrices. The decomposition theorem can
be used to obtain a polynomial algorithm to test membership in the class of
balanced 0, ±1 matrices. This is discussed in Section 4. Section 5 surveys
special classes of balanced matrices while Section 6 states a coloring theorem
for graphs whose clique-node matrix is balanced. Finally, in Section 7, we
propose some conjectures and indicate some directions for further research.

2 Bicoloring, Logic and Integer Polyhedra

2.1 Bicoloring

Berge [4] introduced the following notion. A 0, 1 matrix is bicolorable if its
columns can be partitioned into blue and red columns in such a way that
every row with two or more l's contains a 1 in a blue column and a 1 in a
red column. This notion provides the following characterization of balanced
0,1 matrices.

Theorem 2.1 (Berge [4]) A 0,1 matrix A is balanced if and only if every
submatrix of A is bicolorable.

A 0,1 matrix A can be represented by a hypergraph (the columns of
A represent nodes and the rows represent edges). Then the definition of
balancedness for 0,1 matrices is a natural extension of the property of not
containing odd cycles for graphs, and the notion of bicoloring is a natural
extension of bipartition in graphs. Berge's theorem can be viewed as an
extension to hypergraphs of the fact that a graph is bipartite if and only
if it contains no odd cycle. In fact, this is the motivation that led Berge
to introduce the notion of balancedness. Several results on bipartite graphs
generalize to balanced hypergraphs, such as K5nig's bipartite matching the-
orem, as stated in the next theorem. In a hypergraph, a matching is a set
of pairwise nonintersecting edges and a transversal is a node set intersecting
all the edges.

Theorem 2.2 (Berge, Las Vergnas [9]) In a balanced hypergraph, the maxi-
mum cardinality of a matching equals the minimum cardinality of a transver-
sal.

The next result generalizes a theorem of Gupta [43] on bipartite multigraphs.
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Theorem 2.3 (Berge [6]) In a balanced hypergraph, the minimum number
of nodes in an edge equals the maximum cardinality of a family of disjoint
transversals.

Ghouila-Houri [401 introduced the notion of equitable bicoloring for a 0, -1
matrix A as follows. The columns of A are partitioned into blue columns and
red columns in such a way that, for every row of A, the sum of the entries in
the blue columns differs from the sum of the entries in the red columns by
at most one.

Theorem 2.4 (Ghouila-Houri [401) A 0, ±1 matrix A is totally unimodular
if and only if every submatrix of A has an equitable bicoloring.

A 0, ±1 matrix A is bicolorable if its columns can be partitioned into blue
columns and red columns in such a way that every row with two or more
nonzero entries either contains two entries of opposite sign in columns of the
same color, or contains two entries of the same sign in columns of different
colors. For a 0, 1 matrix, this definition coincides with Berge's notion of
bicoloring. Clearly, if a 0, ±1 matrix has ar equitable bicoloring as defined
by Ghouila-Houri, then it is bicolorable.

Theorem 2.5 (Heller, Tompkins [45]) Let A be a 0, ±-1 matrix with at most
two nonzero entries per row. A is totally unimodular if and only if A is
bicolorable.

A consequence of Camion's theorem is that a 0, ±1 matrix with at most
two nonzero entries per row is balanced if and only if it is totally unimodular.
So Theorem 2.5 shows that a 0, ±1 matrix with at most two nonzero entries
per row is balanced if and only if it is bicolorable. The following theorem
extends Theorem 2.1 to 0, ±1 matrices and Theorem 2.5 to matrices with
more than two nonzero entries per row.

Theorem 2.6 (Conforti, Comuijols [20]) A 0, ±1 matrix A is balanced if
and only if every submatrix of A is bicolorable.

Cameron and Edmonds [12] observed that the following simple algorithm
finds a valid bicoloring of a balanced matrix. They described their algorithm
for 0, 1 matrices, but it also works for 0, ±1 matrices.

4



Algorithm
Input: A 0,-±-1 matrix A.
Output: A bicoloring of A or a proof that the matrix A is not balanced.

Stop if all columns are colored or if some row is improperly colored. Oth-
erwise, color a new column red or blue as follows.

If no row of A forces the color of a column, arbitrarily color one of the
uncolored columns.

If some row of A forces the color of a column, color this column accord-
ingly.

When the algorithm fails to find a bicoloring, the sequence of forcings
that resulted in an improperly colored row identifies a submatrix with two
nonzeros per row and column which violates balancedness. However, this
algorithm cannot be used as a recognition of balancedness for the following
reason: When the matrix A is not balanced, the algorithm may still find a
bicoloring if one exists.

2.2 Integrality of Packing, Partitioning and Covering
Polytopes

A polytope is integral if all its extreme points have only integer-valued com-
ponents. Given a 0,1 matrix A, the set packing polytope is

P(A) = {x: Ax < 1, 0 < x < 1}.

The integrality of the set packing polytope is related to the notion of perfect
graph. A graph G is perfect if, for every node induced subgraph H of G, the
chromatic number of H equals the size of its largest clique. The fundamental
connection between the theory of perfect graphs and integer programming
was established by Fulkerson [37], Lovasz [53] and Chvital [17]. The clique-
node matrix CG of a graph G is a 0,1 matrix whose columns are indexed
by the nodes of G and whose rows are the incidence vectors of the maximal
cliques of G.

Theorem 2.7 (Lovisz [53], Fulkerson [37], Chvital [17]) A graph G is per-
fect if and only if the set packing polytope P(CG) is integral.

A 0,1 matrix is perfect if P(A) is integral. It follows from Theorem 2.7
that a 0,1 matrix is perfect if and only if its rows of maximal support form the
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clique-node matrix of a perfect graph. Berge [5] showed that every balanced
0,1 matrix is perfect. In fact, the next theorem characterizes a balanced
0, 1 matrix A in terms of the set packing polytope P(A) as well as the set
covering polytope Q(A) and the set partitioning polytope R(A):

Q(A)= {x: Ax> 1, o0 x< 1x ,

R(A) = {x: Ax = 1, 0 < x < 1}.

Theorem 2.8 (Berge [51, Fulkerson, Hoffman, Oppenheim [38]) Let M be a
0, 1 matrix. Then the following statements are equivalent:

(i) M is balanced.

(ii) For each submatrix A of M, the set covering polytope Q(A) is integral.

(iii) For each submatrix A of M, the set packing polytope P(A) is integral.

(iv) For each submatrix A of M, the set partitioning polytope R(A) ;s inte-
gral.

Conforti and Cornu6jols [20] generalize this result to 0, ±1 matrices.
Given a 0, ±1 matrix A, let n(A) denote the column vector whose ith com-
ponent is the number of -l's in the ith row of matrix A.

Theorem 2.9 (Conforti, Cornu~jols [20]) Let M be a 0, ±1 matrix. Then
the following statements are equivalent:

(i) M is balanced.

(ii) For each submatrix A of M, the generalized set covering polytope
{x : Ax > 1 - n(A), 0 < x < 1} is integral.

(iii) For each submatrix A of M, the generalized set packing polytope
{x: Ax< 1-n(A), O<x< 1} is integral.

(iv) For each submatrix A of M, the generalized set partitioning polytope
{x :Ax =1 - n(A), 0 < x < 1} is integral.
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A system of linear constraints is totally dual integral (TDI) if, for each
integral objective function vector c, the dual linear program has an integral
optimal solution (if an optimal solution exists). Edmonds and Giles [351
proved that, if a linear system Ax < b is TDI and b is integral, then {x
Ax < b} is an integral polyhedron.

Theorem 2.10 (Fulkerson, Hoffman, Oppenheim [38]) Let A = A2  be
A3

a balanced 0, 1 matrix. Then the linear system

S Aix 1
A2x _1

A3 : 1
x>D

is TDI.

So Theorem 2.10 and the Edmonds-Giles theorem imply Theorem 2.8.
Note that the total dual integrality of the set packing problem when the
constraint matrix is a balanced 0,1 matrix also follows from the perfect
graph theorem of Lovisz [53].

=(A,
Theorem 2.11 (Conforti, Cornuejols 120)) Let A A2  be a balanced

A3
0, ±1 matrix. Then the linear system

i A 1  > 1-n(Al)

A2X < 1-n(A2)
A3X = 1 - n(A3 )

0 < x< l5

is TDI.

It may be worth noting that this theorem does not hold when the upper
bound x < I is dropped from the linear system, see [20]. In fact, the resulting
polyhedron may not be integral. For comparison, we state a result that
follows from the Hoffman-Kruskal theorem [46].
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(A,
Theorem 2.12 (Hoffman, Kruskal [46]) Let A = A2  be a totally uni-

A3

(b1
modular matrix and b = an integral vector of appropriate dimensions.

Then the linear system IAix > b1

A 2 X b 2
A 3 x=b 3

x > 0

is TDI.

2.3 Related Classes of 0, ±1 Matrices

In this section, we first introduce a family of integral polytopes obtained by
spanning the spectrum from totally unimodular to balanced 0, ±1 matrices.
In the second part of the section we consider two natural extensions of the
concept of balancedness, namely perfection and idealness.

The matrix A is minimally non-totally unimodular if it is not totally
unimodular, but every proper submatrix has that property.

Theorem 2.13 (Camion [15] and Gomory (cited in [15])) Let A be a 0, ±1
minimally non-totally unimodular matrix. Then A is square, det(A) = ±2
and A- 1 has only ±-½ entries. Furthermore, each row and column of A has
an even number of nonzeros.

Let N be the class of minimally non-totally unimodular matrices. Recent
results of Truemper [65] (see also [66]), give a simple construction and several
characterizations of all matrices in Xt. For a 0, ±1 matrix A, denote by t(A)
the column vector whose i~h component is the number of nonzeroes in row
i. Finally, let 3 be the family of matrices that can be obtained from the
identity matrix by changing some +1's into -l's.

Theorem 2.14 (Conforti, Cornuejols, Truemper [24]) The following two
statements are equivalent for a 0, -1 matrix A and a nonnegative integral
vector c.
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(i) A does not contain a submatrix A' E 7W such that t(A') _ 2c, where c'
is the subvector of c corresponding to the rows of A'.

(ii) The polytope {(x,s) : Bx + Js = b - n(B), 0 < x < 1, s > 0} is
integral for all column submatrices B of A, all J E 3 and all integral
vectors b such that 0 < b < c.

We make the following remarks about this theorem.

* When 2c > t(A), Theorem 2.14 gives a characterization of totally uni-
modular matrices which can be deduced from the Hoffman-Kruskal
theorem (Theorem 2.12).

* It is easy to see that A is balanced if and only if A does not contain a
submatrix A' E ?i with t(A') <_ 2. So, when c = 1 in Theorem 2.14,
we get a variation of Theorem 2.9.

e When A is a 0, 1 matrix, Theorem 2.14 reduces to a result of Truemper
and Chandrasekaran [67].

Now we consider two extensions of the concept of balanced 0, ±1 matrix.
A 0, ±1 matrix A is ideal if the generalized set covering polytope Q(A) = {x :
Ax > 1 - n(A), 0 < x <! 1} is integral. A generalized set covering inequality
ax > 1 - n(a) is dominated by bx > 1 - n(b), if {k: bk = 1} g {k: ak = 1}
and {k : bk = -1} g_ {k : ak = -1}. A prime implication of Q(A) is
a generalized set covering inequality ax > 1 - n(a) which is satisfied by
all the 0,1 vectors in Q(A) but is not dominated by any other generalized
set covering inequality valid for Q(A). A row monotonization of A is any
0, 1 matrix obtained from a row submatrix of A by multiplying some of its
columns by -1. A row monotonization of A is maximal if it is not a proper
submatrix of any row monotonization of A. Little is known about ideal 0, ±1
matrices but ideal 0, 1 matrices have been studied [51], [52], [59], [561, [30].

Theorem 2.15 (Hooker [491) Let A be a 0, ±1 matrix such that the general-
ized set covering polytope Q(A) contains all of its prime implications. Then
A is ideal if and only if all the maximal row monotonizations of A are ideal
0, 1 matrices.

9



A 0, -1 matrix A is perfect if the generalized set packing polytope P(A) "
I{x : Ax < 1 - n(A), 0 < x < 1} is integral. For 0, 1 matrices, the concept of
perfection is well studied (through Theorem 2.7 and the extensive literature
on perfect graphs), but very little is known about perfect 0, ±-1 matrices.
Therefore it seems natural to relate the notion of perfection for 0, ±1 matrices
to that for 0, 1 matrices.

We say that a polytope Q contained in the unit hypercube [0, 11" is ir-
reducible if, for each j, both polytopes Q nl {xj = 0} and Q nl {xj = 1} are
nonempty. A generalized set packing inequality ax < 1 - n(a) is dominated
by bx < 1 - n(b), if {k : ak = 1} _ {k : bk = 1} and {k : ak-= -1} C
{k : bk -- -1}. Given a 0, ±1 matrix A, the completion of A is the matrix
A* obtained by adding to A all row vectors a that induce a generalized set
packing inequality ax < 1 - n(a) which is valid for P(A) and not dominated
by any other inequality in A*. A 0, 1 matrix B obtained from A* by multi-
plying through some columns by -1 and replacing all negative entries of the
resulting matrix by 0 is called a monotone completion of A.

Theorem 2.16 (Conforti, Cornu6jols, De Francesco [21]) Let A be a 0, ±1
matrix such that the generalized set packing polytope P(A) is irreducible.
Then A is perfect if and only if all the monotone completions of A are perfect
0, 1 matrices.

2.4 Propositional Logic

In propositional logic, atomic propositions x1 ,...,xj,...,, can be either
true or false. A truth assignment is an assignment of "true" or "false" to every
atomic proposition. A literal is an atomic proposition xi or its negation -xix.
A clause is a disjunction of literals and is satisfied by a given truth assignmert
if at least one of its literals is true.

A survey of the connections between propositional logic and integer pro-
gramming can be found in [48]. The following formulation appears in Dantzig
[34].

A truth assignment satisfies the set S of clauses

V xi v ( V -xi) for all i E S
Je.Pi jEN.
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if and only if the corresponding 0, 1 vector satisfies the system of inequalities

E xi - E xj >! I - JN, for all i E S.
jei jENj

The above system of inequalities is of the form

Ax > 1 - n(A). (1)

We consider three classical problems in logic. Given a set S of clauses,
the satisfiability problem (SAT) consists of finding a truth assignment that
satisfies all the clauses in S or showing that none exists. Equivalently, SAT
consists of finding a 0, 1 solution x to (1) or showing that none exists.

Given a set S of clauses and a weight vector w whose components are
indexed by the clauses in S, the weighted maximum satisfiability problem
(MAXSAT) consists of finding a truth assignment that maximizes the total
weight of the satisfied clauses. MAXSAT can be formulated as the integer
program

Min EI•1 wisi
Ax + s > I - n(A)
xE {0,1},s E {0,1}.

Given a set S of clauses (the premises) and a clause C (the conclusion),
logical inference in propositional logic consists of deciding whether every truth
assignment that satisfies all the clauses in S also satisfies the conclusion C.

To the clause C, using transformation (1), we associate an inequality

e > 1 - n(c),

where c is a 0, ±1 vector. Therefore C cannot be deduced from S if and only
if the integer program

min {cz: Ax > 1 -n(A), x E {0,1}I} (2)

has a solution with value -n(c).
These three problems are NP-hard in general but SAT and logical in-

ference can be solved efficiently for Horn clauses, clauses with at most two
literals and several related classes [11], [16], [64]. MAXSAT remains NP-hard
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for Horn clauses with at most two literals [39]. A set S of clauses is balanced
if the corresponding 0, ±1 matrix A defined in (1) is balanced. Similarly, a
set of clauses is ideal if A is ideal. If S is ideal, SAT, MAXSAT and logical
inference can be solved by linear programming. The following theorem is an
immediate consequence of Theorem 2.9.

Theorem 2.17 Let S be a balanced set of clauses. Then SAT, MAXSAT and
logical inference can be solved in polynomial time by linear programming.

This has consequences for probabilistic logic as defined by Nilsson [55].
Being able to solve MAXSAT in polynomial time provides a polynomial
time separation algorithm for probabilistic logic via the ellipsoid method,
as observed by Georgakopoulos, Kavvadias and Papadimitriou [39]. Hence
probabilistic logic is solvable in polynomial time for ideal sets of clauses.

Remark 2.18 Let S be an ideal set of clauses. If every clause of S contains
more than one literal then, for every atomic proposition xj, there ezist at
least two truth assignments satisfying S, one in which xj is true and one in
which xj is false.

Proof: Since the point xj = 1/2, j = 1,..., n belongs to the polytope
Q(A) = {x : Ax >_ 1 - n(A), 0 < x < 1} and Q(A) is an integral polytope,
then the above point can be expressed as a convex combination of 0,1 vectors
in Q(A). Clearly, for every index j, there exists in the convex combination a
0,1 vector with xj = 0 and another with xi = 1. 0

A consequence of Remark 2.18 is that, for an ideal set of clauses, SAT
can be solved more efficiently than by general linear programming.

Theorem 2.19 (Conforti, Cornuejols [19]) Let S be an ideal set of clauses.
Then S is satisfiable if and only if a recursive application of the following
procedure stops with an empty set of clauses.
Recursive Step

If S = 0 then S is satisfiable.
If S contains a clause C with a single literal (unit clause), set the corre-

sponding atomic proposition xj so that C is satisfied. Eliminate from S all
clauses that become satisfied and remove xj from all the other clauses. If a
clause becomes empty, then S is not satisfiable (unit resolution).

12



If every clause in S contains at least two literals, choose any atomic propo-
sition zx appearing in a clause of S and add to S an arbitrary clause xj or
--,Xj.

The Pbove algorithm for SAT can also be used to solve the logical inference
problem when S is an ideal set of clauses, see [191. For balanced (or ideal)
sets of clauses, it is an open problem to solve MAXSAT in polynomial time
by a direct method, without appealing to polynomial time algorithms for
general linear programming.

2.5 Nonlinear 0,1 Optimization

Consider the nonlinear 0,1 maximization problem

maxZE{~o,l)n E ak fi xj fi (1 - x)
k jETk jERk

where, w.l.o.g., all ordered pairs (Tk, Rk) are distinct and Tk nfRk = 0. This is
an NP-hard problem. A standard linearization of this problem was proposed
by Fortet [36]:

max 1 akyk

Yk- xj < 0 for all k s.t. ak > O, for all j E Tk

Yk +x j < 1 for all k s.t. ak > O, for all jERk

yk -E xj + xj > 1-ITk•I for all k s.t. ak < 0
jeTk jERk

yk, xi E {O,1} for allkandj.

When the constraint matrix is balanced, this integer program can be
solved as a linear program, as a consequence of Theorem 2.11. Therefore, in
this case, the nonlinear 0,1 maximization problem can be solved in polyno-
mial time. The relevance of balancedness in this context was pointed out by
Crama [311.

3 Decomposition Theorems

In this section, we state a decomposition theorem for balanced 0, ±1 matrices
due to Conforti, Cornuejols and Rao [23] and Conforti, Cornuejols, Kapoor
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and Vu~kovi6 [22]. Section 3.1 discusses the problem of changing the sign of
some of the entries of a 0, 1 matrix so that the resulting 0, ±-1 matrix becomes
balanced. In Section 3.2, we present the main theorem. Section 3.3 contains
an outline of its proof.

3.1 Signing 0, 1 Matrices to Be Balanced

In this section, we consider the following question: given a 0, 1 matrix A, is it
possible to turn some of the l's into -l's in order to obtain a balanced 0, ±1
matrix? It turns out, as we will see shortly, that if such a signing exists, it is
unique up to multiplication of rows and columns by -1. Furthermore, there
is a very simple algorithm to perform the signing. As a consequence, in order
to understand the structure of balanced 0, ±1 matrices, it will be sufficient
to concentrate on the zero-nonzero pattern.

Given a 0, ±1 matrix A, the signed bipartite graph representation of A is
a bipartite graph G together with an assignment of weights +1 or -1 to the
edges of G, defined as follows. The nodes of G correspond to the rows and
columns of A, ij is an edge of G if and only if the entry aij of A is nonzero and
the weight of edge ij is the value of aij. We say that G is balanced if A is. A
hole in a graph is a chordless cycle of length four or greater. Thus, a signed
bipartite graph G is balanced if and only if, for every hole H cf G, the sum of
the weights of the edges in H is a multiple of four. (Beware that the material
presented in this paper is unrelated to the notion of balanced signed graphs
introduced in [44], [1] in connection with a problem in attitudinal psychology.
There, a signed graph is balanced if every cycle contains an even number of
edges with weight -1.)

A bipartite graph G is balanceable if there exists a signing of its edges
so that the resulting signed graph is balanced. Equivalently, a 0, 1 matrix
is balanceable if it is possible to turn some of the l's into -l's and obtain a
balanced 0, ±-1 matrix.

Since a cut and a cycle in a graph have even intersection, it follows that
if a signed bipartite graph G is balanced, then the signed bipartite graph
G' obtained by switching signs on the edges of a cut, is also balanced. For
every edge uv of a spanning tree there is a cut containing uv and no other
edge of the tree. These cuts axe known as fundamental cuts and every cut
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is the symmetric difference of fundamental cuts. Thus, if G is a balanceable
bipartite graph, its signing into a balanced signed bipartite graph is unique
up to the (arbitrary) signing of a spanning tree of G. This was already
observed by Camion [14] in the context of 0,1 matrices that can be signed
to be totally unimodular. It follows that a bipartite graph G is balanceable
if and only if the following signing algorithm produces a balanced signed
bipartite graph:

Signing Algorithm
Input: A bipartite graph G.
Output: A signing of G which is balanced if and only if G is balanceable.

Choose a spanning tree of G and sign its edges arbitrarily. Then recur-
sively choose an unsigned edge uv which closes a hole H of G with previously
signed edges, and sign uv so that the sum of the weights of the edges in H is
a multiple of four.

Note that the recursive step of the signing algorithm can be performed
efficiently. Indeed, the unsigned edge uv can be chosen to close the smallest
length hole with signed edges. Such a hole H is also a hole in G, else a chord
of H in G contradicts the choice of uv.

It follows from this signing algorithm, and the uniqueness of the sign-
ing (up to the signing of a spanning tree), that the problem of recognizing
whether a bipartite graph is balanceable is equivalent to the problem of rec-
ognizing whether a signed bipartite graph is balanced.

Figure 1 shows two classes of bipartite graphs which are important in this
study. In all figures, solid lines represent edges and dashed lines represent
chordless paths of length at least one. The black and white nodes are on
opposite sides of the bipartition.

Let G be a bipartite graph. Let u, v be two nonadjacent nodes in opposite
sides of the bipartition. A 3-path configuration connecting u and v is defined
by three chordless paths P1 , P2 , P3 connecting u and v, having no common
intermediate nodes, such that the subgraph induced by the nodes of these
three paths contains no edge other than those of the paths. See Figure 1.
Since paths P1, P2, P3 of a 3-path configuration are of length one or three
modulo four, the sum of the weights of the edges in each path is also one or
three modulo four. It follows that two of the three paths induce a hole of
weight two modulo four. So a 3-path configuration is not balanceable.
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Figure 1: Odd wheel and 3-path configuration

A wheel is defined by a hole H and a node x V V(H) having at least three

neighbors in H, say X1, X2,..., xn. If n is even, the wheel is an even wheel,

otherwise it is an odd wheel, see Figure 1. An edge xxi is a spoke. A suh-Ih

of H connecting xi and xj is called a sector if it contains no intermedi-fe
node xI, 1 < I < n. Consider a balanceable wheel. By the signing algorithm,

all spokes of the wheel can be assumed to be signed positive. This implies

that the sum of the weights of the edges in each sector is two modulo four.

Hence the wheel must be an even wheel.
So, bipartite graphs that are balanceable contain neither odd wheels nor

3-path configurations as node induced subgraphs. The following important
theorem of Truemper states that the converse is also true.

Theorem 3.1 (Truemper [631) A bipartite graph is balanceable if and only if

it does not contain an odd wheel or a 3-path configuration as a node induced
subgraph.

3.2 Decomposition Theorem

In this section we give the main decomposition theorem for balanceable bi-
partite graphs. The theorem states that if a balanceable bipartite graph does

not belong to a restricted class, called basic, then it has one of three cutsets.
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Figure 2: Extended star

Cutsets

A set S of nodes (edges) of a connected graph G is a node (edge) cutset if the
subgraph of G obtained by removing the nodes (edges) in S, is disconnected.

A biclique is a complete bipartite graph with at least one node from each
side of the bipartition and it is denoted by KBD where B and D are the node
sets in each side of the bipartition.

For a node x, let N(x) denote the set of all neighbors of x. In a bipartite
graph, an extended star is defined by disjoint subsets T, A, N of V(G) and
a node z E T such that

(i) A U N C N(x),

(ii) node set T U A induces a biclique (with T on one side of the bipartition
and A on the other),

(iii) if ITI >_ 2, then JAI > 2.

This concept was introduced in [23] and is illustrated in Figure 2. An eztended
star cutset is one where TUAUN is a node cutset. Since the nodes in TUA
induce a biclique, an extended star cutset with N = 0 is called a biclique
cutset. An extended star cutset having T = {x} is called a star cutset. Note
that a star cutset is a special case of a biclique cutset.

Let KBD be a biclique with the property that its edge set E(KBD) is an
edge cutset of the connected bipartite graph G and no connected component
of G \ E(KBD) contains both a node of B and a node of D. Let GB be the
union of the components of G \ E(KBD) containing a node of B. Similarly,
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Figure 3: A 1-join, a 2-join and a 6-join

let GD be the union of the components of G \ E(KBD) containing a node of
D. The set E(KBD) is a 1-join if the graphs GB and GD each contains at
least two nodes. This concept was introduced by Cunningham and Edmonds
[33].

Let KBD and KEF be two bicliques of a connected bipartite graph G,
where B, D, E, F are disjoint node sets with the property that E(KBD) U
E(KEF) is an edge cutset and every component of G \ E(KBD) U E(KEF)
either contains a node of B and a node of E but no node of D U F, or
contains a node of D and a node of F but no node of B U E. Let • be
the union of the components of G \ E(KBD) U E(JKp') containing a node of
B and a node of E. Similarly, let GDF be the union of the components in
G \ E(KBD) U E(KEF) containing a node of D and a node of F. The set
E(KBD) U E(KEF) is a p2-join if neither of the graphs GBE and GDF is a
chordless path with no intermediate nodes in B U D U E U F. This concept
was introduced by Cornuijols and Cunningham [29].

In a connected bipartite graph G, let A, i = 1 6, be disjoint nonempty
node sets such that, for each i, every node in Ai is adjacent to every node
"in A.. 1 U Ai, 1 (indices are taken modulo 6), and these are the only edges
in the subgraph A induced by the node set U?!-1Ai. Assume that E(A) is
an edge cutset but that no subset of its edges forms a 1-join or a 2-join.
Furthermore assume that no connected component of G \ E(A) contains a
node in A, U A3 U As and a node in A2 U A 4 U As. Let Gy35 be the union of
the components of G \ E(A) containing a node in A, U A3 U A5 and G2 6 be

18



Figure 4: Rio

the union of components containing a node in A2 U A4 U As. The set E(A)
constitutes a 6-join if the graphs G135 and G246 contain at least four nodes
each. This concept was introduced in [22].

Two Basic Classes

A bipartite graph is restricted balanceable if its edges can be signed so that
the sum of the weights in each cycle is a multiple of four. This class of
bipartite graphs is well studied in the literature, see [18], [60], [68], [26]. We
discuss it in a later section. Rio is the bipartite graph on ten nodes defined
by the cycle xi, ... ,zo, Zi of length ten with chords xixi+5, 1 5 i 5 5, see
Figure 4.

We can now state the decomposition theorem for balanceable bipartite
graphs:

Theorem 3.2 A balanceable bipartite graph that is not restricted balanceable
is either RIO or contains a 2-join, a 6-join or an extended star cutset.
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3.3 Outline of the Proof

The key idea in the proof of Theorem 3.2 is that if a balanceable bipartite
graph G is not basic, then G contains one of several node induced subgraphs,
which force a decomposition of G with one of the cutsets described in Sec-
tion 3.2.

Parachutes

A parachute is defined by four chordless paths of positive lengths, T =

Vi,... ,v 2; P 1 - v1 ,.. .,z; P2 = v2,... ,z; M " v,... .,z, where v1,v 2,v,z
are distinct nodes, and two edges vvl and vv2. No other edges exist in
the parachute, except the ones mentioned above. Furthermore IE(P 1)J +
IE(P2 )l >_ 3. See Figure 5.

Note that if G is balanceable then nodes v, z belong to the same side of
the bipartition, else the parachute contains a 3-path configuration connecting
v and z or an odd wheel (H, v) with three spokes.

Connected Squares and Goggles

Connected squares are defined by four chordless paths P1 = a,..., b; P2 =

c,..., d; P3 = e,..., f; P4 = g,..., h, where nodes a and c are adjacent to
both e and g and b and d are adjacent to both f and h, as in Figure 6. No
other adjacency exists in the connected squares. Note that nodes a and b
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Figure 6: Connected squares and goggles

belong to the same side of the bipartition, else the connected squares contain
a 3-path configuration connecting a and b or, if IE(P1)I = 1, an odd wheel
with center a. Therefore the nodes a, b, c, d are in one side of the bipartition
and e, f,9, h are in the other.

Goggles are defined by a cycle C = h, P, z, a, Q, t, R, b, u, S, h, with two
chords ua and zb, and chordless paths P, Q, R, S of length greater that one,
and a chordless path T = h,... , t of length at least one, such that no inter-
mediate node of T belongs to C. No other edge exists, connecting nodes of
the goggles, see Figure 6.

Connected 6-Holes

A triad consists of three internally node-disjoint paths t,..., U; t,..., v and
t,..., -W, where t, u, v, w are distinct nodes and u, v, w belong to the same
side of the bipartition. Furthermore, the graph induced by the nodes of the
triad contains no other edges than those of the three paths. Nodes u, v and
w are called the attachments of the triad.

A fan consists of a chordless path z,... , y together with a node z adjacent
to at least one node of the path, where x, y and z are distinct nodes all
belonging to the same side of the bipartition. Nodes z, y and z are called
the attachments of the fan.

A connected 6-hole E is a graph induced by two disjoint node sets T(E)
and B(E) such that each induces either a triad or a fan, the attachments of
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Figure 7: The four types of connected 6-holes

T(E) and B(E) induce a 6-hole and there are no other adjacencies between
the nodes of T(E) and B(E). Figure 7 depicts the four types of connected
6-holes.

The following theorem proved by Conforti, Cornuejols and Rao [23] con-
cerns the class of balanceable bipartite graphs that do not contain a connected
6-hole or RIO as a node induced subgraph.

Theorem 3.3 A balanceable bipartite graph not containing RIO or a con-
nected 6-hole as a node induced subgraph either is restricted balanceable or
contains a 2-join or an extended star cutset.

22



We now discuss the proof of this theorem. A bipartite graph is strongly
balanceable if its edges can be signed so that each cycle whose sum of weights
is congruent to 2 mod 4 has at least two chords. It follows from the defini-
tion that every restricted balanceable bipartite graph is strongly balanceable.
Conforti and Rao [261 prove the following:

Theorem 3.4 A strongly balanceable bipartite graph either is restricted bal-
anceable or contains a 1-join.

Let KED and KEF be two bicliques on disjoint node sets such that the
node set BUE induces another biclique KEE. If KBE is a biclique articulation
of G and the removal of the edges E(KBD) U E(KEF) disconnects G, then
E(KBD) U E(KSF) is a strong 2-join. Part II of [23] proves the following:

Theorem 3.5 A balanceable bipartite graph that is not strongly balanceable
either contains a parachute or a wheel as a node induced subgraph or has a
strong 2-join.

Part III of [23] disposes of the parachutes through the following variant
of Theorem 3.5:

Theorem 3.6 A balanceable bipartite graph that is not strongly balanceable,
that contains no wheel, no RIO and no connected 6-hole as a node induced sub-
graph, either contains an extended star cutset or contains connected squares
or goggles as a node induced subgraph.

Part IV contains a decomposition result for connected squares:

Theorem 3.7 A balanceable bipartite graph that contains connected squares
but no wheel as a node induced subgraph, has a biclique articulation or a
2-join.

Part V decomposes goggles:

Theorem 3.8 A balanceable bipartite graph that contains goggles but no
wheel, no R10 and no connected 6-hole as a node induced subgraph, has an
extended star cutset or a 2-join.
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So the theorems contained in Parts II-V give a decompositon theorem
for balanceable bipartite graphs that do not contain R10 , connected 6-holes
or wheels as node induced subgraphs. Part VI gives a decomposition when
wheels are present as node induced subgraphs:

Theorem 3.9 A balanceable bipartite graph containing a wheel but no con-
nected 6-hole as a node induced subgraph, has an extended star cutset.

Since a graph that has a 1-join has a biclique articulation, Theorems 3.4
and 3.6-3.9 prove Theorem 3.3.

So it remains to find a decomposition of balanceable bipartite graphs
that contain RI0 or connected 6-holes as node induced subgraphs. This is
accomplished by Conforti, Cornu~jols, Kapoor and Vu~kovi6 in [22].

Theorem 3.10 A balanceable bipartite graph containing Rio as a proper
node induced subgraph has a biclique articulation.

Theorem 3.11 A balanceable bipartite graph that contains a connected 6-
hole as a node induced subgraph, has an extended star cutset or a 6-join.

Now the proof of Theorem 3.2 follows from Theorems 3.3, 3.10 and 3.11.

4 Recognition Algorithm

Conforti, Cornuijols, Kapoor and Vu~kovi6 [22] give a polynomial time al-
gorithm to check whether a 0, ±1 matrix is balanced. It generalizes the
algorithm of Conforti, Cornuejols and Rao [23] to check whether a 0,1 ma-
trix is balanced. Note that, together with the signing algorithm described in
Section 3.1, the algorithm to check whether a 0, ±1 matrix is balanced tests
whether a 0,1 matrix is balanceable. We describe the recognition algorithm
using the bipartite representation introduced in Section 3.

4.1 Balancedness Preserving Decompositions

Let G be a connected signed bipartite graph. The removal of a node or
edge cutset disconnects G into two or more connected components. From
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these components we construct blocks by adding some new nodes and signed
edges. We say that a decomposition is balancedness preserving when it has
the following property: all the blocks are balanced if and only if G itself
is balanced. The central idea in the algorithm is to decompose G using
balancedness preserving decompositions into a polynomial number of basic
blocks that can be checked for balancedness in polynomial time.

For the 2-join and 6-join, the blocks can be defined so that the decompo-
sitions are balancedness preserving. For the extended star cutset this is not
immediately possible.

2-Join Decomposition

Let E(KBD) U E(KEF) be a 2-join of G and let GEE and GDF be the graphs
defined in Section 3.2. We construct the block G1 from GEE as follows.

" Add two nodes d and f, connected respectively to all nodes in B and
to all nodes in E.

" Let P be a shortest path in GDF connecting a node in D to a node in
F. If the weight of P is 0 or 2 mod 4, nodes d and f are connected by
a path of length 2 in G1. If the weight of P is 0 mod 4, one edge of
Q is signed +1 and the other -1, and if the weight of P is 2 mod 4,
both edges of Q are signed +1. Similarly if the weight of P is 1 or 3
mod 4, nodes d and f are connected by a path of length 3 with edges
signed so that Q and P have the same weight modulo 4. Let d' and f'
be the endnodes of P in .D and F respectively. Sign the edges between
node d and the nodes in B exactly the same as the corresponding edges
between d' and the nodes of B in G. Similarly. sign the edges between
f and E exactly the same as the corresponding edges between f' and
the nodes in E.

The block G2 is defined similarly.

Theorem 4.1 Let G be a signed bipartite graph with a 2-join E(KBD) U
E(KEF) where KBD and KEF are balanced and neither D U F nor B U E
induces a biclique. Then G is balanced if and only if both blocks G1 and G2

are balanced.
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6-Join Decomposition

Let G be a signed bipartite graph and let A 1,..., A6 be disjoint nonempty
node sets such that the edges of the graph A induced by U&1 Ai form a 6-join.
Let G 135 and G246 be the graphs defined in Section 3.2. We construct the
block G, from G135 as follows:

e Add a node a2 adjacent to all the nodes in A, and A3, a node a4
adjacent to all the nodes in A3 and As and a node a6 adjacent to all
the nodes in A5 and A&.

* Pick any three nodes a' E A2, a' E A4 and a' E A6 and, in GI,
sign the edges incident with a2 , a4 and a6 according to the signs of the
corresponding edges of G incident with a', a' and a'.

The block G2 is defined similarly.

Theorem 4.2 Let G be a signed bipartite graph with a 6-join E(A) such
that A is balanced. Then G is balanced if and only if both blocks G1 and G2
are balanced.

4.2 Extended Star Cutset Decomposition

Consider the following way of defining the blocks for the extended star de-
composition of a connected signed bipartite graph G. Let S be an extended
star cutset of G and G 1,..., Gk the connected components of G \ S. De-
fine the blocks to be G1,..., Gk where Gi is the subgraph of G induced by
V(Gý) U S with all edges keeping the same weight as in G.

The extended star decomposition defined in this way is not balancedness
preserving. Consider, for example, a signed odd wheel (H, x) where H is
an unquad hole (a hole of weight congruent to 2 mod 4). If we decompose
(H, x) by the extended star cutset {x} U N(x), then it is possible that all of
the blocks are balanced, whereas (H, x) itself is not since H is an unquad
hole. Two other classes of bipartite graphs that can present a similar problem
when decomposing with an extented star cutset are tents and short 3-path
configurations, see Figure 8. A tent, denoted by r(H, u, v), is a bipartite
graph induced by a hole H and two adjacent nodes u, v 0 V(H) each having
two neighbors on H, say u1 , u 2 and v1, v2 respectively, with the property that
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Figure 8: Odd wheel, short 3-path configuration and tent

u1 ,u 2 ,v 2,vI appear in this order on H. A short 3-path configuration is a
3-path configuration in which one of the paths contains three edges.

To overcome the fact that our extended star decomposition is not bal-
ancedness preserving, we proceed in the following way. We transform the
input graph G into a graph G' that contains a polynomial number of con-
nected components, each of which is a node induced subgraph of G, and
which has the property that if G is not balanced, then G' contains an un-
quad hole that will either never be broken by any of the decompositions we
use, or else be detected while performing the decomposition. We call this
process a cleaning procedure. To do this, we have to study the structure of
signed bipartite graphs that are not balanced, in particular the structure of
a smallest (in the number of edges) unquad hole. For such a hole we prove
the following theorem.

Theorem 4.3 In a non-balanced signed bipartite graph, a smallest unquad
hole H* contains two edges zlX2 and 31lY2 such that:

"* The set N(zi) U N(X2) U N(y1 ) U N(Y2 ) contains all nodes with an odd
number (greater than 1) of neighbors in H.

"* For every tent r(H*,u,v), u or v is contained in N(xl) U N(z 2) U
N(y1 ) U N(Y2 ).
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Let XO, X1 , X2 , X3 and yo, Y, 1Y2,1Y3 be subpaths of H*. The above theorem
shows that if we remove from G the nodes N(xz) U N(X2 ) U N(yi) U N(y2 ) \
{x0, X1, t 2, X3, yo, Y2, Y3, Y4}, then H* will be clean (i.e. it will not be contained
in any odd wheel or tent). If H° is contained in a short 3-path configuration,
this can be detected during the decomposition (before it is broken). It turns
out that, by this process, all the problems are eliminated. So the cleaning
procedure consists of enumerating all possible pairs of chordless paths of
length 3, and in each case, generating the subgraph of G as described above.
The number of subgraphs thus generated is polynomial and, if G is not
balanced, then at least one of these subgraphs contains a clean unquad hole.

4.3 Algorithm Outline

The recognition algorithm takes a signed bipartite graph as input and rec-
ognizes whether or not it is balanced. The algorithm consists of four phases:

"* Preprocessing: The cleaning procedure is applied to the input graph.

"* Extended Stars: Extended star decompositions are performed, until
no block contains an extended star cutset.

"* 6-joins: 6-join decompositions are performed until no block contains
a 6-join.

"* 2-joins: Finally, 2-join decompositions are performed until no block
contains a 2-join.

The 2-join and 6-join decompositions cannot create any new extended
star cutset, except in one case which can be dealt with easily. Also a 2-
join decomposition does not create any new 6-joins. So, when the algorithm
terminates, none of the blocks have an extended star cutset, a 2-join or a
6-join. By the decomposition theorem (Theorem 3.2), if the original signed
bipartite graph is balanced, the blocks must be copies of RI0 or restricted
balanced (i.e. the weight of every cycle is a multiple of four). R10 is a graph
with only ten nodes and so it can be checked in constant time. Checking
whether a signed bipartite graph is restricted balanced can be done using
the following algorithm of Conforti and Rao [261:
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Construct a spanning forest in the bipartite graph and check if there exists
a cycle of weight 2 mod 4 which is either fundamental or is the symmetric
difference of fundamental cycles. If no such cycle exists, the signed bipartite
graph is restricted balanced.

A different algorithm for this recognition problem, due to Yannakakis
[68], has linear time complexity and will be mentioned in Section 5.1.

The preprocessing phase and the decomposition phases using 2-joins and
6-joins are easily shown to be polynomial. For the extended star decomposi-
tion phase, it is shown that each bipartite graph which is decomposed has a
path of length three which is not present in any of the blocks. This bounds
the number of such decompositions by a polynomial in the size of the graph.
Thus the entire algorithm is polynomial. See [221 for details.

4.4 Two Related Recognition Problems

The algorithm presented in the previous section recognizes in polynomial
time whether a signed bipartite graph contains an unquad hole. Interestingly
Kapoor [50] has shown that it is NP-complete to recognize whether a signed
bipartite graph contains an unquad hole going through a prespecified node.

Theorem 4.4 (Kapoor [50]) Given a bipartite graph G and, node v of G,
it is NP-complete to check if G has an unquad hole which con, iins node v.

One can also ask the following question: given a signed bipartite graph,
does it contain a quad hole (i.e. a hole of weight 0 mod 4)? A linear algorithm
for this recognition problem is given by Conforti, Cornuejols and Vu~kovi6
[25].

A signed bipartite graph is unbalanced if it does not contain a quad hole.
Bipartite graphs which can be signed to be unbalanced are called unbalance-
able. If a bipartite graph is unbalanceable, there is a simple algorithm to
perform the signing (similar to the signing algorithm of Section 3.1). The
class of unbalanced signed bipartite graphs is structurally much simpler than
the class of balanced signed bipartite graphs, one of the reasons being the
following property: in a signed bipartite graph G, all holes of G are unquad
if and only if all cycles of G are unquad. The recognition algorithm in [25]
is based on the following decomposition theorem.
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Theorem 4.5 (Conforti, Comu~jols, Vu~kovi6 [25]) An unbalanceable bipar-
tite graph is either a hole or it contains a one node or a two node cutset.

5 Classes of Balanceable Matrices

In this section we survey decomposition theorems for several classes of bal-
anceable matrices. We relate these decompositions to Theorem 3.2.

5.1 Seymour's Decomposition of Totally Unimodular
Matrices

Seymour [58] gave an important decomposition theorem for 0,1 matrices that
can be signed to be totally unimodular. The decompositions involved in his
theorem are 1-separations, 2-separations and 3-separations. A 0,1 matrix B
has a k-separation if its rows and columns can be partitioned so that

(A'D 2

B D= D1 A 2

where r(D 1) + r(D 2) = k - 1 and the number of rows plus number of columns
of A' is at least k, for i = 1,2. (r(M) denotes the GF(2)-rank of the 0, 1
matrix M).

The basic matrices used in Seymour's decomposition theorem are(11001' (111 11
I I 1 0 0 1 1 0 0

R10o 0 1 1 1 0 , /i0- 1 0 1 1 0 ,
00 11 1 0101 ,

100101 11 0 1

graphic matrices and their transpose. A 0,1 matrix M is graphic if there
exists a tree T such that the rows of M are indexed by the edges of T and
the columns of M are incidence vectors of paths of T. The transpose of a
graphic matrix is said to be cographic.

Theorem 5.1 (Seymour [58]) A 0, 1 matrix that can be signed to be totally
unimodular is either Rio, RIO, graphic, cographic, or it contains a 1-, 2- or
3-separation.
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For a 1-separation r(D') +r(D 2) = 0. Thus both D' and D 2 are matrices
all of whose entries are 0. The bipartite graph corresponding to the matrix
B is disconnected.

For the 2-separation r(D 1) + r(D 2) = 1, thus w.l.o.g. D2 has rank zero
and is identically zero. Since r(D 1 ) - 1, after permutation of rows and

columns, D' = (0 1) where 1 denotes a matrix all of whose entries

are 1 and 0 is a matrix all of whose entries are 0. The 2-separation in the
bipartite graph representation of B corresponds to a 1-join.

For the 3-separation r(D 1) + r(D 2) = 2. If both DI and D 2 have rank 1
then, after permutation of rows and columns,D' =(o 1 ) o, D 2o0

= 0 0 '1 0 "

This 3-separation in the bipartite graph representation of B corresponds to a
2-join. Now w.l.o.g. we assume r(D1 ) = 2 and r(D2 ) - 0. Up to permutation
of rows and columns DI is of the form

= M

where N is a 2 x 2 nonsingular matrix (over GF(2)). Again, up to permuta-
tion of rows and columns, there are exactly two possible cases for N:

1 0 1 1 "

We first examine the structure of D1 when N is of the first kind. Given
N, P and Q, the matrix M is completely determined by the formula M -

QN-1P, because r(D 1) = 2. So, the bipartite graph representation of D1

has node sets C1, C2 and C3 corresponding to columns of (P N) of the type

(o)r( 1s) and (0) respectively, and the node sets R 1 , R2 and R 3

corresponding to rows of ( N ) of the type (1 1), (1 0) and (0 1) respectively.

Either or both node sets C1 and R1 may be empty. When all the node sets
are nonempty the 3-separation is a 6-join. When one of C1 or R1 is empty it
is called a 4-join and when both are empty it is a 2-join.
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When N is of the second type, node sets C2 and R3 may be empty. When
neither is empty, we get a 6-join in the bipartite graph representation. When
one is empty, we get a 4-join and when both are empty, a 3-join. Note that,
when a bipartite graph contains a 1-join, a 3-join or a 4-join, it also contains
an extended star cutset. So the only 1-, 2-, and 3-separations which do not
induce an extended star cutset are the 2-join and the 6-join. By noting that
RI0 contains an extended star cutset, Seymour's theorem 5.1 implies a result
resembling Theorem 3.2:

Corollary 5.2 A 0, 1 matrix that can be signed to be totally unimodular
is either RIO, graphic, cographic, or its bipartite representation contains an
extended star cutset, a 2-join or a 6-join.

5.2 More Decomposition Theorems

A signed bipartite graph is strongly balanced if every cycle of weight 2 mod 4
has at least two chords. Strongly balanced 0, ±1 matrices are defined accord-
ingly. It follows from the definition that restricted balanced 0, ±1 matrices
are strongly balanced, and it can be shown that strongly balanced 0, ±1 ma-
trices are totally unimodular, see [26]. Strongly balanceable 0,1 matrices
can be signed to be strongly balanced with the signing algorithm described
in Section 3.1. Conforti and Rao [26] have shown that a strongly balanceable
0,1 matrix that is not restricted balanceable has a 2-separation (the bipartite
graph representation has a 1-join).

Theorem 5.3 (Conforti, Rao [26]) A strongly balanceable bipartite graph
either is restricted balanceable or contains a 1-join.

Crama, Hammer and Ibaraki [32] say that a 0, ±1 matrix A is strongly
unimodular if every basis of (A, I) can be put in triangular form by permu-
tation of rows and columns.

Theorem 5.4 (Crama, Hammer, Ibaraki [32]) A 0, ±1 matrix is strongly
unimodular if and only if it is strongly balanced.

Yannakakis [68] has shown that a restricted balanceable 0,1 matrix hav-
ing both a row and a column with more than two nonzero entries has a very
special 3-separation: the bipartite graph representation has a 2-join consist-
ing of two single edges. A bipartite graph is 2-bipartite if all the nodes in one
side of the bipartition have degree at most 2.
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Theorem 5.5 (Yannakakis [68]) A restricted balanceable bipartite graph ei-
ther is 2-bipartite or contains a cutnode or contains a 2-join consisting of
two edges.

Based on this theorem, Yannakakis designed a linear time algorithm for
checking whether a 0, ±1 matrix is restricted balanced. A different algorithm
for this recognition problem was stated in an earlier section of this survey.

A bipartite graph is linear if it does not contain a cycle of length 4. Note
that an extended star cutset in a linear bipartite graph is always a star cutset,
due to Condition (iii) in the definition of extended star cutsets. Conforti and
Rao [27] proved the following theorem for linear balanced bipartite graphs:

Theorem 5.6 (Conforti, Rao [27]) A linear balanced bipartite graph either
is restricted balanced or contains a star cutset.

5.3 Totally Balanced 0, 1 Matrices

A bipartite graph is totally balanced if every hole has length 4. Totally
balanced bipartite graphs arise in location theory and were the first balanced
graphs to be the object of an extensive study. Several authors (Golumbic
and Goss [42], Anstee and Farber [2] and Hoffman, Kolen and Sakarovitch
[47] among others) have given properties of these graphs.

An edge uv is bisimplicial if either u or v has degree 1 or the node set
N(u) U N(v) induces a biclique. Note that if uv is a bisimplicial edge and
nodes u and v have degree at least 2, then G has a strong 2-join formed
by the edges adjacent to exactly one node in the set {u, v}. The 2-join is
strong since N(u) U N(v) \ {u, v) induces a biclique. The following theorem
of Golumbic and Goess [42] characterizes totally balanced bipartite graphs.

Theorem 5.7 (Golumbic, Goss, [42]) A totally balanced bipartite graph has
a bisimplicial edge.

Since wheels and parachutes contain holes of length greater than 4, nei-
ther of these two graphs can occur as a node induced subgraph of a totally
balanced bipartite graph. Furthermore if uv is a bisimplicial edge such that
the degree of both u and v is greater that 2, then nodes u, v together with
their neighbors induce a strong 2-join. So the above theorem is related to
Theorem 3.5.
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A 0, 1 matrix A is in standard greedy form if it contains no 2 x 2 subma-

trix of the form (1 1 ), where the order of the rows and columns in thetri ofthefor 1 0

submatrix is the same as in the matrix A. This name comes from the fact
that the linear program

max Yi

yA < c (3)
0 __.y<_p

can be solved by a greedy algorithm. Namely, given yI,... ,yk-I such that
"-,'faijYj : _ci, j-- 1,...,n and 0 :5yj _pi, i-= 1, ... ,Ik-l1, set yk to

the largest value such that -i aijy cj, j -" 1,... ,n and 0 :_ yk •_ pk.
The resulting greedy solution is an optimum solution to this linear program.
What does this have to do with totally balanced matrices? The answer is in
the next theorem.

Theorem 5.8 (Hoffman, Kolen, Sakarovitch [47]) A 0,1 matrix is totally
balanced if and only if its rows and columns can be permuted in standard
greedy form.

This transformation can be performed in time O(nm2) [47].
Totally balanced 0,1 matrices come up in various ways in the context of

facility location problems on trees. For example, the covering problem

n mt

min cjx, + P Piz,
1 1

E aiixj + zi _Ii=,.,M (4)

xj, z E {0,1}

can be interpreted as follows: cj is the set up cost of establishing a facility
at site j, pi is the penalty if client i is not served by any facility, and aij = 1
if a facility at site j can serve client i, 0 otherwise.

When the underlying network is a tree and the facilities and clients are
located at nodes of the tree, it is customary to assume that a facility at site j
can serve all the clients in a neighborhood subtree of j, namely, all the clients
within distance ri from node j.
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An intersection matrix of the set {S,,..., Sm } versus { Rl,..., R1, , where
Si, i = 1,...,m, and R, j = 1,... n, are subsets of a given set, is defined to
be the m x n 0,1 matrix A = (aij) where aij = 1 if and only if Si n Rj 5 0.

Theorem 5.9 (Giles [41]) The intersection matrix of neignborhood subtrees
versus nodes of a tree is totally balanced.

It follows that the above location problem on trees (4) can be solved
as a linear program (by Theorem 2.8 and the fact that totally balanced
matrices are balanced). In fact, by using the standard greedy form of the
neighborhood subtrees versus nodes matrix, and by noting that (4) is the
dual of (3), the greedy solution described earlier for (3) can be used, in
conjunction with complementary slackness, to obtain an elegant solution of
the covering problem. The above theorem of Giles has been generalized as
follows.

Theorem 5.10 (Tamir [61]) The intersection matrix of neighborhood sub-
trees versus neighborhood subtrees of a tree is totally balanced.

Other classes of totally balanced 0,1 matrices arising from location prob-
lems on trees can be found in [62].

6 A Coloring Theorem on Graphs

Let G be a graph and q a positive integer no greater than its chromatic
number X(G). A partial q-coloring of G is a family of q pairwise disjoint
stable sets, say S1,..., S,. If X E Si, node x is said to have color i. Not all
nodes of G need have a color. The partial q-coloring is optimal if the number
of colored nodes is as large as possible.

A family of cliques Cl,..., C, is said to be associate of a partial q-coloring

S1,... , Sq if these cliques are pairwise disjoint, each clique Ci intersects each
Si, and every node of G is either colored or belongs to one of the cliques (or
both).

Theorem 6.1 (Berge [8]) Let G be a graph and q :_ X(G) a positive inte-
ger. If the clique-node matrix of G is balanced, then every optimal partial
q-coloring has an associate family of cliques.
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In the special case where q = 1, an optimal partial q-coloring is a max-
imum stable set. So the existence of an associate family also follows from
Lovisz's perfect graph theorem [53]. Indeed, let a(G) denote the stability
number of G. When G is perfect, a minimum cardinality clique partition of
G, say Ci,.. , C 0(G), is an associate family of cliques for any stable set S, of
cardinality a(G).

7 Some Conjectures and Open Questions

7.1 Eliminating Edges

The following conjecture extends a conjecture of Conforti and Rao [27] to
0, ±1 matrices.

Conjecture 7.1 In a balanced signed bipartite graph G, either every edge
belongs to some R10 , or some edge can be removed from G so that the resulting
signed bipartite graph is still balanced.

The condition on R10 is necessary since removing any edge from R10
yields a wheel with three spokes or a 3-path configuration as a node induced
subgraph.

The truth of the above conjecture would imply that given a 0, ±-1 balanced
matrix we can sequentially turn the nonzero entries to zero in some specific
order until every nonzero belongs to some R1o matrix, while maintaining
balanced 0, ±1 matrices in the intermediate steps.

For 0,1 matrices, the above conjecture reduces to the following:

Conjecture 7.2 (Conforti, Rao [27]) Every balanced bipartite graph con-
tains an edge which is not the unique chord of a cycle.

It follows from the definition that restricted balanced signed bipartite
graphs are exactly the ones such that the removal of any subset of edges
leaves a restricted balhnced signed bipartite graph.

Conjecture 7.1 holds for signed bipartite graphs that are strongly balanced
since, by definition, the removal of any edge leaves a chord in every unquad
cycle.

Theorem 5.7 shows that the graph obtained by eliminating a bisimpli-
cial edge in a totally balanced bipartite graph is totally balanced. Hence
Conjecture 7.2 holds for totally balanced bipartite graphs.
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7.2 Strengthening the Decomposition Theorems

The extended star decomposition is not balanced4ess preserving. This heav-
ily affects the running time of the recognition algorithm for balancedness.
Therefore it is important to find strengthenings of Theorem 3.2 so that only
operations that preserve balancedness are used. We have been unable to
obtain these results even for linear balanced bipartite graphs [28].

Let H be a hole where nodes u1, ... , upv,.. ., Vq, Wl,..., Wp,Xi,. ., q
appear in this order when traversing H, but are not necessarily adjacent.
Let Y = {yl,...,yp} and Z = {zl,. .. , zq) be two node sets having empty
intersection with V(H) and inducing a biclique Kyz. Node y, is connected
with ui and wi for 1 < i < p. Node zi is connected with vi and xi for
1 < i < q. Such a graph, denoted with Wpq is balanceable and contains
no 2-join, no 6-join and no biclique cutset. But this is the only balanceable
bipartite graph with this property that we know. This suggests the following
conjecture:

Conjecture 7.3 Every balanceable bipartite graph that is not Wpq, Rlo or
restricted balanceable, has a 2-join, a 6-join or a biclique cutset.

Another direction in which the main theorem might be strengthened is
as follows.

Conjecture 7.4 Every balanceable bipartite graph which is not signable to
be totally unimodular has an extended star cutset.

In 123], it was shown that the bipartite representation of every balanced
0,1 matrix which is not totally unimodular, has an extended star cutset.

7.3 Holes in Graphs

a-Balanced Graphs

Let G be a signed graph (not necessarily bipartite) and let a be a vector whose
components are in one-to-one correspondence with the chordless cycles of G
and take values in {0, 1, 2, 3}. G is said to be a-balanced if the sum of the
weights on each chordless cycle H of G is congruent to aH mod 4. In the
special case where G is bipartite and a = 0, this definition coincides with the
notion of balanced signed bipartite graph, introduced earlier in this survey.
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Figure 9: 3-path configurations and wheel

A graph is a-bahlnceable if there is a signing of its edges such that the
resulting signed graph is a-balanced. A 3-path configuration is one of the
three graphs represented in Figure 9 (a), (b) or (c). A wheel consists of a
chordless cycle H and a node v 0 V(H) with at least three neighbors on H,
see Figure 9 (d).

Theorem 7.5 (Truemper [631) A graph G is a-balanceable if and only if

"* aH = IHI mod 2 for every chordless cycle H of G,

"* every 3-path configuration and wheel of G is a-balanceable.

Theorem 3.1 is the special case of this theorem where G is bipartite and
a = 0, while Theorem 4.5 provides an independent proof of Theorem 7.5 in
the special case where G is bipartite and a = 2. A difficult open problem is
to extend the decomposition theorem 3.2 to a-balanceable graphs.

Odd Holes

A long standing open problem in graph theory is that of testing whether a
graph contains an odd hole. No polynomial time algorithm is known for this
problem. It was shown by Bienstock [10] that it is NP-complete to decide
whether a graph has an odd (even respectively) hole containing a given node.
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One might be lead to believe that testing whether a graph has an odd hole
is also NP-complete. However, recall that testing whether a bipartite graph
has a hole of length 2 mod 4 is polynomial time (Section 4.3) whereas testing
whether a bipartite graph has a hole of length 2 mod 4 containing a given
node is NP-complete (Theorem 4.4). This encourages us to beleive that
deciding whether a graph has an odd hole can also be done in polynomial
time.

A related open question is that of testing whether a graph or its com-
plement has an odd hole. Berge [3] suggested that this question is in fact
nothing but the recognition problem for perfect graphs. He made the follow-
ing conjecture in 1961, when he introduced the concept of perfect graphs.

Conjecture 7.6 (Berge [3]) A graph is perfect if and only if neither it nor
its complement has an odd hole.

This conjecture has been shown to hold for several classes of graphs and,
for some of these classes, a polynomial time recognition algorithm is known as
well. Such algorithms often rely on a decomposition theorem. So, a general
algorithm for the recognition of perfect graphs may well require a decompo-
sition with the flavor of Theorem 3.2. In particular, 2-join decompositions
seem relevant for perfect graphs [291.

We know of two important classes of perfect 0, ±1 matrices:

"* the matrices obtained from perfect 0,1 matrices by switching signs in
a subset of columns, and

"* balanced 0, ±-1 matrices.

It is an open problem to construct all perfect 0, ±1 matrices, starting frorr
these two basic classes.

Even Holes

Another open problem is testing in polynomial time whether a graph con-
tains an even hole. Even holes are related to fl-perfect graphs introduced
by Markossian, Gasparian and Reed [541. A graph G is #-perfect if, for
every node induced subgraph H of G, the chromatic number of H equals
max{6(F) + 1 : F is a node induced subgraph of H), where 6(F) denotes
the smallest node degree in F. No #-perfect graph contains an even hole,

39



but the converse is not true. Also, the complement of a fl-perfect graph need
not /-perfect.

Theorem 7.7 (Markossian, Gasparian, Reed [541) A graph G and its com-
plement G are both #-perfect if neither G nor G contains an even hole.

Theorem 7.8 (Markossian, Gasparian, Reed [54]) If G contains no evrn
hole and no even cycle with precisely one chord, where this chord forms a
triangle with two edges of the cycle, then G is 3-perfect.

A iinear time algorithm to determine if either G or its complement
contains an even hole follows from their structural characterization of such
graphs. It still remains open to refine Theorem 7.8 in order to determine
exactly which graphs are /-perfect. Also open is the complexity of deciding
if a given graph is #-perfect.

Acknowledgment: We thank Klaus Truemper for his suggestions re-
garding this survey.
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